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Abstract

Affine evolution of chain end-to-end vectors distribution function is derived analytically for non-linear polymer liquids subjected to

uniaxial elongational flow, controlled by time-evolution of chain deformation coefficients. Peterlin approximation for non-Gaussian chain

elasticity is applied, with Padè approximation for the inverse Langevin function. The approach enables calculations of transient molecular

deformation coefficients in entire range of elongation rates and times.

Equations controlling time evolution of the molecular deformation coefficients in elongational flow are solved analytically with an

assumption of dominating elongational component. The approach allows to decouple evolution equations and obtain an approximate closed

form analytical formula describing time evolution of the molecular deformation with high accuracy, in particular at higher elongation rates,

above the Gaussian limit.

Predictions of the analytical formula are compared with numerical computations to evaluate the approximation and ranges of its validity.

The analytical formula enables predicting evolution of average functions in non-linear systems, such as free energy, tensile stress,

molecular orientation, etc. The formula is used to discuss molecular vs. macroscopic deformation in wide range of elongation rates and times,

as well as evolution of stress, axial orientation factor, apparent elongational viscosity.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Chain deformation and segmental orientation produced

during polymer processing determine ultimate physical and

mechanical properties of polymeric solids. Time evolution

of molecular deformation and orientation during processing

affects kinetics of structure development (oriented crystal-

lization, crystal orientation, etc.) and final properties of the

products.

Strong chain extension and orientation produced at fast

uniaxial flow deformations in fiber melt spinning or in solid

state drawing result in high enhancement of mechanical

properties. Model analysis of time evolution of molecular
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deformation and orientation in such systems should consider

non-Gaussian chain statistics and finite chain extensibility.

Time evolution of the distributionW(h,t) of chain end-to-

end vectors in non-Gaussian systems has been considered in

our earlier paper [1] in a wide range of deformation rates

using the following continuity equation

vW

vðDtÞ
Kdiv VW CW

VFelðhÞ

kT
K

Qh

D

� �� �
Z 0 (1)

The system is represented by non-Gaussian elastic

Brownian dumbbels embedded in a viscous continuum

and subjected to steady flow deformation characterised by a

uniform and constant velocity gradient tensor, Q. D is

diffusion coefficient of the chain ends. The evolution

equation accounts for flow convection, Brownian motion

of the chain ends, and the non-linear inverse Langevin

elastic force between the chain ends

VFel Z
kT

ah
L* h

Na
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h (2)
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L*-inverse Langevin function, h/Na characterises chain

extension, and N is number of Kuhn segments of length a in

the chain.

Two asymptotic solutions of Eq. (1) have been discussed

in papers [2,3]. For low chain mobility, the convection term

Q/D dominates the elastic and Brownian forces, and the

chain distribution follows exactly the macroscopic defor-

mation of the viscous matrix with the instantaneous

deformation gradient tensor exp[Qt] up to full chain

extension. The other asymptote has been obtained at large

molecular mobility and/or long deformation times when

steady-state distribution is approached. For flow defor-

mations characterised by a symmetric tensor Q, an

asymptotic steady-state Boltzmann distribution has been

obtained. Such an equilibrium distribution is controlled by

the non-Gaussian elastic potential and a flow potential

resulting from frictional interactions between the chains and

the flowing medium.

Example solutions of Eq. (1) illustrating time evolution

of the distribution W(h,t) between the asymptotic distri-

butions have been discussed in paper [1] for biaxial and

uniaxial flow deformations. Peterlin approximation [4] has

been used to represent the non-Gaussian elastic force

between chain ends.
2. Chain distribution evolution in a uniaxial elongational

flow

In Peterlin approximation the elastic force, Eq. (2), is

expressed by a product of a linear Gaussian term and a

coefficient �E which represents non-linear elasticity of a

chain with an average square end-to-end distance

VFely
3kT

Na2
�Eðhh2iÞh (3)

where

�Eðhh2iÞZ
L*ðhh2i1=2=NaÞ

3ðhh2i1=2=NaÞ
(4)

For Gaussian chains we have �EZ1.

With the Peterlin approximation, the evolution equation

reduces to a form typical for Gaussian systems, but with the

elastic force modified by the parameter �E

vW

vðDtÞ
Kdiv VWCW

3 �Eh

Na2
K

Qh

D

� �� �
Z 0 (5)

where �E which deviates from unity the more, the higher is

deformation of chains in the system.

An analytical self-consistent solution of Eq. (5) was

proposed for the transient distribution in paper [1] for

biaxial and uniaxial flows, but it was deviating considerably

from a more exact numerical one in a wide range of

deformation rates and processing times. In the present paper

we propose a new analytical solution for transient
distribution function and time-dependent chain defor-

mations produced in uniaxial elongational flow which fits

the numerical solution nearly perfectly, in particular in the

range of intermediate and high strain rates.

We discuss transient chain distribution and molecular

deformation in a non-linear system subjected to steady

uniaxial elongational flow. Uniform velocity gradient tensor

and an incompressible viscous medium are assumed, with

the stretching direction along the iZ3 axis

QZ q3

K1=2 0 0

0 K1=2 0

0 0 1

2
64

3
75 (6)

For the uniaxial flow deformation, evolution Eq. (5) with

the Peterlin approximation reduces to the following form in

the explicit components xi of the end-to-end vector, h

vW

vðDtÞ
KV2W K

vW

vx1
x1 C

vW
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� �
3 �E

Na2
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3 �E
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D

� �
K

9 �E

Na2
W Z 0

(7)

where �E represents the modulus of elasticity, in 3kT/Na2

units, of a chain with an average square end-to-end distance

at the instance of time, hh2(t)i. The approximation introduces

formal linearity of the elastic potential in non-linear

systems, physically sensible in the entire range of chain

extensions. In consequence, it is easy to check that the

above evolution equation is satisfied by a peudo-affine

distribution function at any instant of time

Wðh; tÞZ
const

~l
2
1ðtÞ ~l3ðtÞ

exp K
3

2Na2
x21 Cx22
~l
2
1ðtÞ

C
x23
~l
2
3ðtÞ

 !" #

(8)

where the time-dependent molecular elongation coefficients
~l1ðtÞ; ~l3ðtÞ deviate from the actual macroscopic elongation

coefficients l1(t)Zexp(Kq3t/2), l3(t)Zexp(q3t). Affinity of

the distribution is a consequence of assumed uniform

deformation of h vectors at any instant of time, t, and

induced by the macroscopic elongational flow. The

molecular deformation coefficients in Eq. (8), ~l1ðtÞ; ~l3ðtÞ,
satisfy the following set of equations with the Peterlin

modulus �E

t
d ~l

2
1

dt
C �EðtÞCq3t
� �

~l
2
1 K1Z 0 (9)

t
d ~l

2
3

dt
C �EðtÞK2q3t
� �

~l
2
3 K1Z 0

where tZNa2/6D.

It can be easily check, by multiplication of Eq. (7) by xi
2

and integration, that the coefficients ~l1ðtÞ; ~l3ðtÞ satisfy the

following relation, well known for affine chain deformations
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hx21iðtÞZ hx22iðtÞZ
Na2

3

� �
~l
2
1ðtÞ (10)

hx23iðtÞZ
Na2

3

� �
~l
2
3ðtÞ

The initial conditions for Eq. (9) are hxi
2i(tZ0)ZNa2/3

and ~l
2
i ðtZ0ÞZ1. Affinity of the molecular deformation is a

consequence of Peterlin approximation which introduces

instantaneous linear deformation of chains in the system.

Eq. (8) shows pseudo-affine distribution of chains with

molecular elongation coefficients governed by Eq. (9). The

evolution equations for the chain elongation coefficients are

non-linear and they are coupled since �E is a function of the

average square end-to-end distance, or of ~l1ðtÞ; ~l3ðtÞ

hh2iðtÞZ
X
i

hx2i iðtÞZ
Na2

3

� �
2 ~l

2
1ðtÞC ~l

2
3ðtÞ

h i
(11)

The inverse Langevin function present in Eq. (4) for the

Peterlin modulus can be expressed analytically by a Padè

approximation [5] in the following form

L*ðxÞyx
3Kx2

1Kx2

� �
(12)

and this yields the Peterlin modulus

�EðtÞZ
1

3
C

2

3 1K 2 ~l
2
1ðtÞC ~l

2
3ðtÞ

	 

=3N

h i (13)

With the Padè approximation, modulus �E equals unity at

the initial isotropic state, ~l
2
i ðtZ0ÞZ1, and it tends to

infinity when the average chain conformation approaches

full extension, hh2i(t)/Na2, then 2 ~l
2
1ðtÞC ~l

2
3ðtÞ/3N.
3. Analytical approximation for uniaxial elongational

flows

For flow deformations dominated by uniaxial elongation,

q3O0, where we have q1Zq2ZKq3/2, time-evolution of

the average square end-to-end distance, hh2i(t), is controlled

by the elongational component q3. Then in all conditions,

except for the state of rest, we have

hx21iZ hx22i! hx23i (14)

For small elongation rates and/or short deformation times

we have hh2i/N2a2 and �Ez1. At higher elongation rates

and longer deformation times hh2izhx23i because

hx21iZ hx22i/ hx23i. Then, the average hh2i can be approxi-

mated by hx23i, or the trace 2
~l
2
1ðtÞC ~l

2
3ðtÞ in Eq. (13) by ~l

2
3ðtÞ,

and the Peterlin modulus reduces to

�EðtÞy �E hx23iðtÞ
� �

Z
1

3
C

2

3 1 K ~l
2
3ðtÞ=3N

h i
0
@

1
A (15)
The above form decouples Eq. (9), and functions ~l1ðtÞ;
~l3ðtÞ can be calculated analytically.

Introducing zZ ~l
2
3, the decoupled equations read

t NK
z

3

	 
 dz
dt

ZNC Nð2q3tK1ÞK
1

3

� �
z

C
1

9
ð1K6q3tÞz

2haCbzCcz2
(16)

t
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2
1

dt
C f ðtÞ ~l

2
1 K1Z 0 (17)

where

aZN; bZNð2q3tK1ÞK
1

3
;

cZ
1

9
ð1K6q3tÞ

(18)

f ðtÞZ
9NKzðtÞ

3 3NKzðtÞ½ �

� �
Cq3t (19)

Since DZb2K4ac is always positive

DZ
9N2ð2q3tK1Þ2 C12Nq3tC2NC1

9
(20)

solution of Eq. (16) obtained with the initial condition z(tZ
0)Z1 reads

K
1
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ln

aCbzCcz2

aCbCc

� �

C
1ffiffiffiffi
D
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� �
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D

p
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D
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Z

t

t

(21)

Solution of the second Eq. (17) can be obtained after

calculation of z(t) from Eq. (21). Then

~l
2
1ðtÞZ exp K

ðzðtÞ
1

uðzÞdz

� �
1C

ðzðtÞ
1

gðzÞexp

ðzðtÞ
1

uðsÞds

� �
dz

� �
(22)

where

uðsÞZ
9Nð1Cq3tÞK ð1C3q3tÞs

9ðaCbsCcs2Þ
(23)

gðzÞZ
3NKz

3ðaCbzCcz2Þ
(24)
4. Uniaxial molecular deformation

Figs. 1–6 illustrate time evolution of the chain elongation

coefficients ~l3 and ~l1 vs. t/t calculated from the analytical

Eqs. (21) and (22) for the elongation rates q3tZ0.1, 0.5, and

0.7, assuming the chain length NZ100. The evolution

curves predicted by the analytical formulas (solid lines) are



Fig. 2. Molecular elongation ~l1 vs. reduced time t/t during calculated for

uniaxial elongational flow using Eqs. (21) and (22) at q3tZ0.1, and

compared with the numerical solution, Eq. (9). Lines like in Fig. 1.
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compared in the figures with the numerical solution of Eqs.

(9) and (13) also using the Peterlin/Padè approximation

(dashed lines). Thin line plots indicate macroscopic

elongation coefficients of the viscous medium

l3ðtÞZ expðq3tÞ; l1ðtÞZ exp
Kq3t

2

	 

(25)

and steady-state, equilibrium limit of the molecular

elongation coefficients predicted from the numerical

formula [1]

~l3ððt=tÞ/NÞZ
1

�Eeq K2q3t

� �1=2

;

~l1ððt=tÞ/NÞZ
1

�Eeq Cq3t

� �1=2
(26)

where �Eeq is computed from the following self-consistent

equation

9Nð �Eeq K1Þ

3 �Eeq K1
Z

1
�Eeq K2q3t

C
2

�Eeq Cq3t
(27)

The molecular elongation plots in Figs. 1–6 diverge

tangentially from the macroscopic elongation at the initial

time, and they approach the equilibrium state at t/t/N.

Such an evolution between macroscopic deformation

asymptote and the steady-state one is controlled by the

non-linear chain elasticity at the instantaneous state.

The analytical formulas, Eqs. (21) and (22), predict

values of the chain elongation coefficients nearly identical

with the values obtained numerically from Eq. (9) for q3t

above 0.5. Also at the elongation rates q3t below 0.5, the

deviation is not significant and the evolution of chain

deformation remains within physically sensible bounds. The
Fig. 1. Molecular elongation ~l3 vs. reduced time t/t calculated for uniaxial

elongational flow using the analytical Eq. (21) at q3tZ0.1 (solid line), and

compared with the numerical solution, Eq. (9) (dashed line). Thin lines—

macroscopic flow elongation and the steady-state limit of the chain

elongation, NZ100.
example computations show that the proposed analytical

formula can be used for uniaxial elongational flows in a

wide range of elongation rates, in particular at faster

processes, where very good agreement with the numerical

calculations is found.

For comparison, the molecular elongation coefficients

predicted by our earlier analytical self-consistent formula

[1] deviate more from the numerical predictions, in

particular within the range of elongation rates q3t between

0.7 and 5, as well as for intermediate values of the time, q3t.

The deviation of the self-consistent formula leads to an

underestimation of the chain elongation. Nevertheless, the

self-consistent formula approaches the same steady-state

equilibrium limit as the numerical solution does.

It should be mentioned, that the here derived analytical
Fig. 3. Molecular elongation ~l3 vs. reduced time t/t calculated for uniaxial

elongational flow using the analytical Eq. (21) at q3tZ0.5, and compared

with the numerical solution, Eq. (9). Lines like in Fig. 1.



Fig. 4. Molecular elongation ~l1 vs. reduced time t/t calculated for uniaxial

elongational flow using Eqs. (21) and (22) at q3tZ0.5, and compared with

the numerical solution, Eq. (9). Lines like in Fig. 1.

Fig. 6. Molecular elongation ~l1 vs. reduced time t/t calculated for uniaxial

elongational flow from Eqs. (21) and (22) for q3tZ0.7, and compared with

the numerical solution, Eq. (9). Lines like in Fig. 1. The analytical and

numerical solutions nearly overlap.
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formulas are valid solely for the uniaxial elongational flow.

The new analytical solution is possible only when the

Peterlin modulus is mainly controlled by a single, dominat-

ing chain deformation coefficient, as it is in the case of

elongational flow. Then, the modulus can be approximated

by a function of the dominating deformation coefficient

alone, and the set of differential equations decouples and

can be solved analytically. This allows the new analytical

solution of the decoupled equations, avoiding the less exact

self-consistent approach.

The decoupling is not possible for biaxial deformation,

where two of the deformation coefficients are of the same

order and none of them can be neglected.

Fig. 7 shows time evolution of the molecular elongation
~l3 predicted by the present analytical formula, Eq. (21), vs.
Fig. 5. Molecular elongation ~l3 vs. reduced time t/t calculated for uniaxial

elongational flow using Eq. (21) for q3tZ0.7, and compared with the

numerical solution, Eq. (9). Lines like in Fig. 1. The analytical and

numerical solutions nearly overlap.
macroscopic elongation l3Zexp(q3t) for several elongation

rates q3t between 0.1 and 50. The molecular elongation

plots (solid lines) deviate from the affine macroscopic

elongation (dashed line) the later, the higher is the

elongation rate. At the fastest process, q3tZ50, the

molecular elongation coefficient follows the macroscopic

one, until achieving the equilibrium limit with nearly

extended chains.
5. Stress and molecular orientation

In the Peterlin approximation, time evolution of the
Fig. 7. Evolution of the affine molecular elongation, ~l3, in the uniaxial

elongational flow calculated using the analytical formula, Eq. (21), vs.

macroscopic elongation l3 at several elongation rates q3t (solid lines).

Dashed line—the limit of the molecular deformation following exactly the

macroscopic flow, NZ100.



Fig. 8. Evolution of the Peterlin modulus, �E, in the uniaxial elongational

flow vs. macroscopic elongation, l3, calculated from Eq. (13) using

molecular elongation coefficients calculated from the analytical formula,

Eqs. (21) and (22), for several elongation rates, q3t. NZ100.
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elastic force between the chain ends is controlled by the

evolution of the average square end-to-end distance, hh2(t)i

felðtÞy
3kT

Na2
�Eðhh2iðtÞÞh (28)

The average elastic stress tensor reads [6,7]

hpiðtÞZ nhfel5hiy3nkT �EðtÞ
hh5hiðtÞ

Na2

� �

Z
kT �EðtÞ

v0

~GðtÞ

N
(29)

where n is number density of chains, v0Z1/nN—volume per

single segment in the system, and

~GðtÞZ

~l
2
1ðtÞ 0 0

0 ~l
2
1ðtÞ 0

0 0 ~l
2
3ðtÞ

2
6664

3
7775 (30)

is a time-dependent molecular deformation tensor in the

uniaxial flow. In the Gaussian limit we have �EZ1, and the

stress tensor reduces to

hpiðtÞZ
kT

v0N
~GðtÞ (31)

Then, the non-linear elastic tensile stress reads

hDpiðtÞZ hp33 Kp11iy
kT �EðtÞ

v0N
~l
2
3ðtÞK ~l

2
1ðtÞ

	 

(32)

where the modulus �EðtÞ in the Peterlin/Padè approximation

is a function of ~l1ðtÞ; ~l3ðtÞ, (Eq. (13)), and it tends to infinity
at the full chain extension, tr ~GZ ~l

2
3C2 ~l

2
1Z3N.

Evolution of the Peterlin modulus �E with the macro-

scopic deformation lnl3Zq3t predicted from the analytical

solution, Eqs. (15) and (21), is shown in Fig. 8 for several

elongation rates, q3t, between 0.1 and 50. Initial conditions

of an isotropic, unstressed system are assumed. Substantial

effects of the flow deformation on the modulus are predicted

for flow rates much exceeding 0.5. Below that value the

effects are negligible. Macroscopic elongation l3 at which

the modulus approaches its steady-state value is the lower,

the higher is the elongation rate. Saturation of the modulus

at the steady-state molecular elongation increases by

approximately ten times with increasing q3t to a value of

five, and by one hundred times at q3tZ50.The modulus

tends to infinity at full chain extension with q3t/N.

Orientation of chain segments, a, in a chain with end-to-

end vector h is represented by the following orientation

tensor [2,8]

AðhÞZ 1K
3 h

Na

� �
L* h

Na

� �
" #

h5h

h2
(33)

In the Gaussian limit of small chain extensions, h/Na/1,

we have [2]
AðhÞZ
3

5

h5h

N2a2
(34)

and the average orientation tensor

hAiZ
1

5

~G

N
(35)

Eqs. (31) and (35) provide well known linear stress-

orientation relation for Gaussian systems.

At higher chain extensions, with the Peterlin approxi-

mation for a chain in the system

L* h
Na

� �
3 h

Na

� � y �Eðhh2iÞ (36)

we have

AðhÞy 1K
1

~E

� �
h5h

h2
(37)

The above formula is valid in the entire range of chain

extension, and the average orientation tensor reads

hAiy 1K
1

~E

� �
h
h5h

h2
i (38)

With increasing the modulus �E to infinity (nearly

extended chains) the average tensor hAi converges to the

diadic form hh5h/h2i well known for rigid-rod molecules.

For uniaxial deformations, the axial components of hAi

read

hA11i ¼ hA22i

y
1

4p
1K

1

~E

� �ð2p
0

d4

ðp
0

~l
2
1sin

3w cos24

r2ðw;4Þ
dw (39)



Fig. 9. Evolution of the reduced tensile stress, hDpiv0/kT, in the uniaxial

elongational flow vs. macroscopic elongation, l3, calculated using Eq. (32)

using molecular elongation coefficients calculated from the analytical

formula.

Fig. 10. Evolution of the axial orientation factor, f3, in uniaxial elongational

flow vs. macroscopic elongation, l3, calculated using Eq. (44) using

molecular elongation coefficients calculated from the analytical formula.
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hA33iy
1

4p
1K

1

~E
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~l
2
3cos

2w

r2ðw;4Þ
sin w dw

where

r2ðw;4ÞZ ~l
2
1sin

2wC ~l
2
3cos

2w (40)

Usually, axial orientation of chain segments with respect

flow direction (iZ3) is usually characterized by the

orientation factor, f3, which can be determined from the

difference of the axial components [2]

f3 Z hA33iK hA11i (41)

In the Gaussian limit, the orientation factor reduces to the

known formula

f3 Z
1

5N
~l
2
3 K ~l

2
1

	 

(42)

For non-linear systems, the components hA11i and hA33i

can be calculated from Eq. (39) valid for the case ~l3O ~l1,
and they read
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Then, time evolution of the orientation factor f3,

calculated with the Peterlin/Padè approximation, reads

f3ðtÞZ
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2
3 C2 ~l

2
1

	 

9NK ~l

2
3 K2 ~l

2
1

	 

~l
2
3 K ~l

2
1

	 


! 1C
~l
2
1

2 ~l
2
3

K
3 ~l

2
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l
2
1

~l
2
3 K ~l

2
1

	 
r arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l
2
3

~l
2
1

K1

vuut
2
664

3
775 (44)

where the time-dependent chain elongation coefficients ~l3O
~l1 can be calculated from the analytical Eqs. (21) and (22).

Figs. 9 and 10 illustrate evolution of the reduced tensile

stress, hDpiv0/kT, and the axial orientation factor, f3, with

increasing macroscopic deformation l3 at several

elongation rates. The stress and the orientation factor are

computed from Eqs. (32) and (34) using the molecular

elongation coefficients predicted form the analytical sol-
ution, Eqs. (21) and (22), for isotropic, unstressed initial

conditions. The calculated tensile stress approaches a

steady-state limit, and the limit level increases by orders

of magnitude with increasing the elongation rate, in

particular for faster processes, q3tO0.5. The increase of

the stress is unlimited when increasing molecular defor-

mation up to full chain extension at the limit of q3t/N.

The orientation factor f3 also shows a steady-state plateau at

the equilibrium stress, and the values of f3 are limited by

unity when the tensile stress increases to infinity. This

implies non-linear stress-orientation behaviour of the

system at high stresses.

Fig. 11 shows the orientation factors f3 plotted vs. the

reduced tensile stress, Dpv0/kT, calculated for different



Fig. 11. Axial orientation factor, f3, vs. reduced tensile stress, hDpiv0/kT, in

the uniaxial elongational flow calculated using Eqs. (21), (22), (32) and (44)

using molecular elongation coefficients calculated from the analytical

formula in a wide range of elongation rates and stresses (solid line). Dashed

line—Gaussian approximation, NZ100.
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elongation rates from the analytical formulas. The values

coincide in a single stress-orientation plot in the entire range

of the elongation rates used in the calculations. The dashed

line indicates the Gaussian behaviour. The non-linear plot

predicted by the present analytical formula deviates from

the Gaussian plot approximately at the level of the

orientation factor of about 0.2.

Axial orientation factor, f3, predicted by the present

analytical formula is compared in Fig. 12 with experimental

measurements of the amorphous orientation factor [9–13]

and the average chain elongation in PET fibers from the

measurements of the elongation at break. Assuming that the

product of the actual chain elongation coefficient in a fiber,
~lfiber, and the elongation at break, lbreak, should be a
Fig. 12. Axial orientation factor, f3, plotted vs. reduced molecular

elongation coefficient ~l3= ~l3;max, calculated using the analytical solution,

Eqs. (21), (22) and (44), and compared with the experimental results.
constant representing maximum chain elongation at break,

we have

~lfiberlbreak Z ~lmax Z const (45)

Then, the reduced elongation coefficient ~lfiber= ~lmax can be

expressed by the inverse of the elongation at break, 1/lbreak.

Solid line in Fig. 12 shows axial orientation factor f3 vs.

the reduced molecular elongation ~l3= ~l3;max computed from

the molecular elongation coefficients determined form Eqs.

(21) and (22). In this calculations we have ~l3;maxZ
ffiffiffiffiffiffi
3N

p
,

and the initial condition hx21iðtZ0ÞZ hx23iðtZ0ÞZNa2=3.

The plot calculated vs. reduced chain elongation coefficient
~l3= ~l3;max is compared in the figure with the experimental

measurements of the amorphous orientation factor vs.

1= ~lbreak. The experimental points deviate from the model

prediction at higher chain elongations and orientation. The

deviation can be a consequence of highly oriented crystal-

lites present in fibers exhibiting high amorphous orientation.

The crystallites may disturb the network of entanglements

and introduce confined spaces for the amorphous segments.

The highest values of the amorphous orientation factor and

chain elongation are measured for as-spun fibers obtained

by hot-tube melt spinning [10,11]. The fibers show the

degree of crystallinity of about 30% and high crystalline

orientation.

Contribution of the elastic tensile stress to the apparent

elongational viscosity, hDpi/q3, calculated from this model

is shown in Fig. 13. The figure shows time-evolution of the

contribution calculated for several elongation rates. It is

seen that in the range of low elongation rates, q3t!0.5, the

deformed chains contribute to the viscosity a term nearly

proportional to time at the beginning of the process which

levels off to a steady-state value. At higher elongation rates,

a steep increase followed by levelling off at the steady-state
Fig. 13. Reduced elongational viscosity, h*/3h0ZhDpiNv0/3kTtq3, vs.

reduced time, t/t, calculated using the analytical solution, Eqs. (21), (22)

and (32), for several elongation rates q3t. h
*—elongational viscosity, h0—

Newtonian shear viscosity, NZ100.
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is predicted. The steady-state level increases by orders of

magnitude with increasing q3t. Similar behaviour during

the elongation time has been shown by measurements of the

apparent elongational viscosity in polypropylene melt

subjected to constant strain rates [14,15].
6. Conclusions

Solution of the evolution Eq. (7) for the system of non-

Gaussian chains subjected to uniaxial elongational flow

with Peterlin approximation for the chain elasticity is an

affine, time-dependent distribution function of the chain

end-to-end-vectors, W(h,t), Eq. (8). Components of the

affine molecular deformation tensor, or the chain elongation

coefficients, are governed by the system of non-linear

evolution Eq. (9), coupled by the time-dependent Peterlin

modulus �EðtÞ. The Peterlin modulus equals unity for the

system of unstressed, relaxed chains and tends to infinity for

the system of fully extended chains. Analytical solution of

the evolution equations is found in this paper, Eqs. (21) and

(22), with the assumption of dominating elongational

component in the applied external uniaxial flow field.

With such assumption, the evolution Eq. (9) is decoupled

and solved analytically with Padè approximation for the

inverse Langevin function.

Affine form of the evolution of the distribution function

W(h,t) during the flow is a consequence of linear form of the

chain elastic force with respect to vectors h in the Peterlin

approximation, while the instantaneous modulus of each

chain in the system is expressed by inverse Langevin

function of an average chain extension.

The affine molecular deformation tensor, ~G, deviates

from the macroscopic affine deformation tensor during the

deformation time. Symmetry of molecular deformation

tensor results from symmetry of the applied flow. The

analytical solution shows physically sensible asymptotic

behaviour for uniaxial elongational flows with dominating

elongational component and small deviation from numeri-

cal predictions. The deviation is negligible at higher

elongation rates, q3tO0.5. The analytical solution can be

also used at lower elongation rates with preserved physical

sense of the results, for example for elongation rates q3tO
0.3. At lower elongation rates, Gaussian limit is available.

At the beginning of the evolution process, the analytical

solution, as well as the numerical one, is tangential to the

macroscopic elongational deformation, next it deviates with

increasing the processing time, and converges to a steady-

state, equilibrium limit. The non-linear analytical model is
valid for the entire range of elongation rates and chain

extensions in uniaxial elongational flows.

The affine evolution of the distribution function in non-

linear systems enables calculations of time evolution of

average functions and tensors such as free energy, stress,

orientation, etc. The analytical formula is applied for example

calculations of the evolution of molecular elongation

coefficients during time, and versus macroscopic elongation

applied to the sample in a wide range of elongation rates and

deformation times. Evolution of tensile stress, axial

orientation factor, and apparent elongational viscosity is

also calculated using the analytical formula.

A unique master plot representing non-linear stress-

orientation behaviour is also calculated, and the results are

compared with experimental measurements of the amor-

phous orientation factor vs. elongation at break of PET

fibers. The comparison indicates physically sensible pre-

dictions of the analytical formula proposed for non-linear

systems subjected to uniaxial elongational flow with

dominating elongational component.
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